A Facile Synthesis of 11H-Indeno[1,2-b] quinolin-11-ones

David C. Lankin (1) and Hans Zimmer

Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221

Received May 5, 1972

The synthesis of the substituted 11H-indeno[1,2-b]-quinolin-H-ones, (2), have previously been reported (2). However, most of these reported preparations are rather long and involved and, in some cases, employ intermediates which are not readily available. Thus, 3-(2-phenyl-quinolinyl)carboxylic acids, which are not conveniently available starting materials, were converted into their chlorides and ring closure was affected in low yields to 2 and substituted 2 species by a Friedel-Crafts reaction (2a). It was in connection with another research problem that it was necessary to prepare quantities of 2 for use in making spectral comparisons. Consequently, a facile synthetic route to the desired 2 was devised and is described here.

Reduction of the 2-(2-nitrobenzylidene)-1,3-indandiones, (1a-c), which were obtained by a condensation of 1,3-indandione with an aromatic aldehyde (3), with either sodium dithionite or stannous chloride gave the desired 11*H*-indeno[1,2-b] quinolin-11-ones, (2a-c) in low to moderate yields (4). The spectral data for 1a-c and 2a-c, most of which have not previously been reported, are summarized in Table 1.

The reaction $1 \rightarrow 2$ probably involves the intermediate amine 3, which when formed, immediately undergoes ring closure to give 2. The involvement of such an amine, in which the 2-aminobenzene moiety is cis with respect

to a carbonyl carbon, has been postulated in some photochemical studies reported earlier by us (5). The reaction which is described here represents a general method for obtaining the 11*H*-indeno[1,2-*b*] quinolin-11-one ring system from readily available starting material in a simple two step reaction sequence (6).

EXPERIMENTAL

General Procedures.

Spectra were determined as follows: ir, chloroform solution, Perkin Elmer 700; uv, methanol solution, Unicam SP-800A; nmr, deuteriochloroform solution, Bruker HFX-10; mass spectra, Hitashi-Perkin Elmer RMU-7A operating at 70 v. Analyses by tle involved Eastman Kodak precoated silica gel with fluorescent indicator as the adsorbent, eluted with chloroform and developed with iodine vapor and/or detected by ultraviolet light. Elemental analyses were performed by Galbraith Laboratories, Nashville, Tennessee, gave satisfactory results for all new compounds; all melting points are uncorrected.

Preparation of 2-(2-Nitrobenzylidene)-1,3-indandiones, (**1a-c**). General Procedure.

A solution of equimolar amounts (30-50 mmoles) of 1,3-indandione and the substituted 2-nitrobenzaldehyde in 80-100 ml. of glacial acetic acid containing 2-5 ml. of concentrated sulfuric acid was stirred at room temperature for 12-24 hours. The reaction mixture was poured into 400 ml. of water and the resulting precipitate was filtered. The solid, which was obtained, was recrystallized from the appropriate solvent.

2-(2-Nitrobenzylidene)-1,3-indandione, (1a).

This compound was obtained as a yellow crystalline solid, m.p. $187\text{-}189^\circ$ from 1-butanol (Lit. (3) 188°), $R_f = 0.51$, in 90% yield.

2-(4,5-Dimethoxyoxy-2-nitrobenzylidene)-1,3-indandione, (1b).

This compound was obtained as bright yellow crystals, m.p. $242\text{-}243.5^{\circ}$ from isopropyl alcohol, $R_f=0.46$, in 60% yield. The mass spectrum of 1a showed a molecular ion at m/e 339.

Anal. Calcd. for $C_{18}H_{13}NO_6$: C, 63.72; H, 3.86; N, 4.13. Found: C, 63.65; H, 3.75; N, 3.82.

2-(4,5-Methylenedioxy-2-nitrobenzylidene)-1,3-indandione, (1c).

This compound was obtained as a bright yellow solid, m.p. $228-229^{\circ}$ from methanol/acetone, R=0.48, in 88% yield. The mass spectrum of 1c showed a molecular ion at m/e 323.

Anal. Caled. for C₁₇H₉NO₆: C, 63.16; H, 2.81; N, 4.33. Found: C, 62.81; H, 2.73; N, 4.02.

Notes Vol. 9

TABLE 1
Spectral Properties of 2-Benzylidene-1,3-indandiones (1a-c) and 11H-Indeno[1,2-b]quinolin-11-ones, (2a-c)

	Infrared Data (a)		Ultraviolet Data (b)		Nmr Data	
	$v \max \left(\mathrm{cm}^{-1} \right)$	Assignment	λ max (nm)	ϵ	Chemical Shift (d)	Assignment (e)
	1740	$C_{+}O_{+}O_{-}$	205 sh	17,200	1.74 (s)	$H_{\mathbf{a}}$
1a	1698	C · O (c)	220	19,500		-
	1645	$\mathbf{C} \cdot \mathbf{C}$	$243~\mathrm{sh}$	27,000	1.74-2.96 (m)	H_b, H_c-H_i
			255	31,000		
(1	R/H_e , R'/H_d)		261 sh	30,500		
			322.5	11,800		
	1735	C-0	208	18,500	1.69 (s)	$H_{\mathbf{d}}$
1b	1697		245 sh	22,100	,	ď
	1638	$\mathbf{C} \cdot \mathbf{C}$	265 sh	22,000	2.27 (s)	$H_{\mathbf{b}}$
			307	12,000	, ,	L)
$(R \cdot R' \cdot OCH_3)$		385	10,100	2.75 (s)	$H_{\mathbf{e}}$	
`	3,7				1.69-2.43 (m)	$\mathrm{H_{f} ext{-} ilde{H}_{i}}$
					5.95 (s)	-OCH ₃
					5.97 (s)	-OCH ₃
	1740	$\mathbf{C} \cdot \mathbf{O}$	208	20,200	1.80 (s)	$H_{\mathbf{a}}$
1c	1696		$243 \mathrm{sh}$	27,900	` ,	u
	1643	\mathbf{C}	258	30,600	2.31 (s)	Нb
			293	14,000		
(R-R′ -OCH ₂ O-)			$305 \mathrm{sh}$	13,700	2.61 (s)	$H_{\mathbf{e}}$
			380	8,200	1.85-2.44 (m)	$H_{\mathbf{f}} - H_{\mathbf{i}}$
	- '				3.80 (s)	O-CH ₂ -O

H _i (?)
H _h (?)
Ha
I _i (?)

**

2 b	255	17,800	(Hz)		
		$298 \mathrm{sh}$	37,000	2.53 (s)	$\mathrm{H}_{\mathbf{e}}$
(R-R'=OCH ₃)	310	47,900	2.90 (s)	$H_{\mathbf{b}}$	
-				2.10-2.67 (m)	H_{f} - H_{h} (?)
				5.93 (s)	OCH_3
				5.98 (s)	OCH ₃
1715	$\mathbf{C}_{\leq}\mathbf{O}$	$208 \mathrm{\ sh}$	19,200	1.85 (s)	H_a
1623	C∸N	220	19,900		*
		236.5	16,200	2.01 (bd), J = 7.3	H _i (?)
		250	17,900	(Hz)	
2c		293	37,000	2.57 (s)	$H_{\mathbf{e}}$
(R-R'=-OCH ₂ O-)		305	40,400		•
_		315	33,400	2.90 (s)	$H_{\mathbf{b}}$
				2.10-2.97 (m)	H_{f} - H_{h} (?)
				3.86 (s)	-OCH ₂ O-

(a) Measured in chloroform solution. (b) Measured in methanol solution. (c) When measured in dichloromethane, (C $^{\circ}$ O) 1699 and 1738 cm $^{-1}$ and in carbon tetrachloride (C $^{\circ}$ O) 1702 and 1741 cm $^{-1}$. See I. Agranat, R. M. J. Loewenstein and E. D. Bergmann, *Israel J. Chem.*, 7, 89 (1969). (d) All spectra were determined in deuteriochloroform. Shifts are reported as τ values with TMS as an internal reference. All spectra were run at 90 MHz. Multiplicities are as follows: (s) τ singlet, (d) τ doublet, (t) τ triplet, (dd) τ doublet of doublets, (td) τ triplet of doublets, (m) τ multiplet, and (bs) τ broad singlet, and (bd) τ broadened doublet. (e) All integrated areas are consistent with the assignments. A (?) indicates the assignment is tentative. (f) Measured in carbon tetrachloride solution (C τ O) 1723 and (C=N) 1632 cm $^{-1}$. See N. H. Cromwell and R. A. Mitsch, *J. Org. Chem.*, 26, 3812 (1961).

Reduction of (1a-c).

General Procedure A.

To a solution of 2.0 g. of 1 in 800 ml. of hot (60-70°) 95% ethanol was added an aqueous solution of sodium dithionite (15 g./30 ml. water). The red color of the solution, which initially formed, gradually faded to yellow and, after stirring for a total of 0.5-1.0 hours, the solution was cooled and filtered. The resulting solid was recrystallized from the appropriate solvent affording the 11*H*-indeno[1,2-*b*] quinolin-11-ones, (2a-c).

General Procedure B.

To 15.0 g. of stannous chloride dihydrate which was dissolved in 150-200 ml, of concentrated hydrochloric acid was added 5.0 g. of 1. The solution was stirred at room temperature for 24 hours. The reaction mixture was cooled to 0° and slowly neutralized with ammonium hydroxide solutions to pH 8-9. The resulting precipitate was filtered and dried. The dried solid was combined with sand and extracted with chloroform in a Soxhlet apparatus until the liquid in the extraction thimble was essentially colorless (2-4 days). The chloroform was evaporated and the solid which was obtained was recrystallized from the appropriate solvent providing the 11H-indeno[1,2-b] quinolin-11-ones (2a-c).

11H-Indeno[1,2-b]quinolin-11-one, (2a).

This compound was obtained as a yellow solid which was sublimed (160-170°/4 mm), m.p. 173-174° (Lit. 7, 174-175°, Lit. 8, 176°, $R_f = 0.25$, in 18% yield (Procedure A) and 45% yield (Procedure B).

7,8-Dimethoxy-11*H*-indeno[1,2-*b*] quinolin-11-one, (2*b*).

This compound was obtained as a deep yellow crystalline solid, m.p. 287-289° from pyridine (Lit. 2b, 290-290.5°, pyridine),

 $R_f = 0.24, \ \text{in} \ 58\% \ \text{yield}$ (Procedure A) and 51% yield (Procedure B).

7,8-Methylenedioxy-11H-indeno[1,2-b]quinolin-11-one, (2c).

This compound was obtained as a yellow solid, m.p. $243\cdot245^{\circ}$ from acetic acid (Lit. 2b, $245\cdot246^{\circ}$, acetic acid), $R_f=0.36$, in 37% yield (Procedure A) and 14% yield (Procedure B).

The spectral data for **1a-c** and **2a-c** are summarized in Table I. Acknowledgement.

Support for this work on PHS Grant EH-00159-02 is gratefully acknowledged.

REFERENCES

- (1) Environmental Health Trainee, 1968-1970.
- (2a) W. Borsche and F. Sinn, Ann. Chem., 538, 283 (1939);
 (b) W. Borsche and W. Ried, ibid., 554, 269 (1943);
 (c) E. Noelting and H. Blum, Ber., 34, 2467 (1901).
- (3) I. Agranat, R. M. J. Loewenstein, and E. D. Bergmann, Israel J. Chem., 7, 89 (1969).
 - (4) Yields were not optimized.
- (5a) H. Zimmer, D. C. Armbruster, S. P. Kharidia, and D. C. Lankin, Tetrahedron Letters, 4053 (1969); (b) H. Zimmer and R. Walter, Z. Naturforsch., 18b, 669 (1963); (c) H. Zimmer, F. Haupter, J. Rothe, W. E. J. Schrof, and R. Walter, ibid., 18b, 165 (1963).
- (6) All 2-nitrobenzaldehydes and the 1,3-indandione used in this study were obtained from Aldrich Chemical Company, Milwaukee, Wisconsin.
- (7) N. H. Cromwell and R. A. Mitsch, J. Org. Chem., 26, 3812 (1961).
 - (8) R. Oberkobusch, Chem. Ber., 86, 975 (1953).